Source Separation and Machine Learning 1st Edition by Jen-Tzung Chien – Ebook PDF Instant Download/Delivery: 0128177969, 978-0128177969
Full download Source Separation and Machine Learning 1st Edition after payment

Product details:
ISBN 10: 0128177969
ISBN 13: 978-0128177969
Author: Jen-Tzung Chien
Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation.
Emphasizes the modern model-based Blind Source Separation (BSS) which closely connects the latest research topics of BSS and Machine Learning
Includes coverage of Bayesian learning, sparse learning, online learning, discriminative learning and deep learning
Presents a number of case studies of model-based BSS (categorizing them into four modern models – ICA, NMF, NTF and DNN), using a variety of learning algorithms that provide solutions for the construction of BSS systems
Read less
People also search for:
hybrid transformers for music source separation
blind source separation python
audio source separation github
harmonic percussive source separation
music source separation with band split rnn
Tags: Jen-Tzung Chien, Source Separation, Machine Learning


