Pseudomonas Model Organism Pathogen Cell Factory 1st Edition by Bernd H. A. Rehm – Ebook PDF Instant Download/Delivery: 978-3527319145, 352731914X
Full download Pseudomonas Model Organism Pathogen Cell Factory 1st Edition by Bernd H. A. Rehm after payment

Product details:
ISBN 10: 352731914X
ISBN 13: 978-3527319145
Author: Bernd H. A. Rehm by Bernd H. A. Rehm
Table of contents:
1 Comparative Genomics of Pseudomonas
Kristoffer Kiil, Tim T. Binnewies, Hanni Willenbrock, Susse Kirkelund Hansen, Lei Yang, Lars Jelsbak, David W. Ussery, and Carsten Friis
1.1 Introduction
1.1.1 Other Species of Pseudomonas
1.1.2 Obtaining Sequence Data on Pseudomonas
1.2 Pan/Core Genome of Pseudomonas
1.3 Phylogeny of Pseudomonas
1.4 Blast Atlas of Pseudomonas Genomes
1.4.1 Region 5 243 000-5 361 000
1.4.2 Region 713 000-785 000
1.5 Functional Categories
1.6 Codon Usage and Expression
1.7 Future Outlook
References
2 Clinical Relevance of Pseudomonas aeruginosa: A Master of Adaptation and Survival Strategies
Niels Høiby, Helle Krogh Johansen, Claus Moser, and Oana Ciofu
2.1 Introduction
2.2 CF
2.3 Survival of P. aeruginosa by Adaptation to the Inflammatory Defense System
2.4 Conductive and the Respiratory Zones of the Lungs
2.5 Survival of P. aeruginosa by Adaptation to the Respiratory Zone of the Lungs
2.6 Survival of P. aeruginosa by Adaptation to the Conductive Zone of the Lungs
2.7 Survival of P. aeruginosa by Adaptation to the Antibiotic Therapy
2.8 Evolutionary Implications of the Adaptability of P. aeruginosa
References
3 Adherence of Pseudomonas aeruginosa
Randall T. Irvin
3.1 Introduction
3.2 What is Adherence?
3.3 Role of Adherence in Infection
3.4 How is Bacterial Adherence Associated with Virulence?
3.5 P. aeruginosa Adhesins
3.6 Surface Receptor Requirements of the Pilus Adhesin
3.7 How Does PilA Mediate Attachment to Human Mucosal Surfaces?
3.8 X-ray Crystallographic Structural Studies of the Pilin Structural Protein
3.9 Structure of the Pilus Fiber
3.10 Structure of the Receptor-Binding Domain and Location on the Pilus
3.11 Structural Nature of the Receptor-Binding Domain
3.12 Twitching Motility
3.13 How Does the Pilus Attach to a Solid Surface?
3.14 The Monkey-Bar Swing Paradox
3.15 Molecular Basis for Receptor-binding Domain Interaction with Steel Surfaces
3.16 Pili as Nanowires for Redox Reactions
3.17 What is the Most Important Role of Adherence to P. aeruginosa
References
4 Flagella and Pili of Pseudomonas aeruginosa
Jeevan Jyot and Reuben Ramphal
4.1 Introduction
4.2 Flagellum of P. aeruginosa
4.2.1 Structure of the P. aeruginosa Flagellum
4.2.2 Chromosomal Organization of the Flagellar Genes of P. aeruginosa
4.2.3 Transcriptional Hierarchy of the Flagellar Genes
4.2.4 Model Proposed for Flagellar Assembly in P. aeruginosa
4.2.5 Environmental/Nonflagellar Regulators of Flagellar Expression
4.2.6 Posttranslational Modification of Flagellin
4.2.6.1 Flagellar Glycosylation Islands (GIs) in P. aeruginosa
4.2.6.2 Polymorphism of the P. aeruginosa a-type GI
4.2.7 Role of Flagella in Inflammation
4.2.8 Role of Flagellum in Pathogenesis
4.3 Pili of P. aeruginosa
4.3.1 Structure of P. aeruginosa Pilus
4.3.2 Pilus/Fimbrial Genes of P. aeruginosa
4.3.3 Regulation of Pilus Assembly and Twitching Motility
4.3.4 Assembly of Type IV Pili
4.3.5 Pilin Classification
4.3.5.1 Type IV a and b Pilins
4.3.5.2 Group I-V Pilins
4.3.6 Pseudopilins
4.3.7 Chaperone-Usher Pathways
4.3.8 flp-tad-rcp Gene Cluster
4.3.9 Posttranslational Modifications of Pilin
4.3.10 Role of Pili in Pathogenesis
4.4 Conclusions
References
5 Pseudomonas Motility and Chemotaxis
Junichi Kato
5.1 Introduction
5.2 Chemotaxis Assay Methods
5.3 Ecological Aspects of Chemotaxis
5.3.1 Host-Microbe Interactions
5.3.2 Nitrogen Cycle
5.3.3 Bioremediation and Chemotaxis Toward Environmental Pollutants
5.4 Molecular Biology of Chemotaxis in Pseudomonas
5.4.1 Molecular Mechanism of Bacterial Chemotaxis
5.4.2 MCPs in Pseudomonas
5.4.3 Che Proteins in Pseudomonas
5.4.4 Polar Localization of MCPs and Che Proteins
5.5 Pseudomonas as Model Microorganisms for Chemotaxis Research
References
6 Iron Transport and Signaling in Pseudomonads
Francesco Imperi, Karla A. Mettrick, Matt Shirley, Federica Tiburzi, Richard C. Draper, Paolo Visca and Ian L. Lamont
6.1 Introduction
6.2 Siderophores Used by Pseudomonads
6.2.1 Endogenous Siderophores of Pseudomonads
6.2.2 Pyoverdines
6.2.2.1 Pyochelin
6.2.2.3 Other Endogenous Siderophores
6.2.3 Exogenous Siderophores Utilized by Pseudomonads
6.2.3.1 Enterobactin
6.2.3.2 Desferrioxamines
6.2.3.3 Ferrichromes
6.2.3.4 Aerobactin
6.2.3.5 Citrate
6.3 Siderophore Synthesis
6.3.1 Nonribosomal Peptide Synthesis
6.3.2 Pyoverdine Biosynthetic Pathways
6.3.3 Synthesis of other Pseudomonas Siderophores
6.4 Ferri-Siderophore Transport
6.4.1 Overview
6.4.2 Outer Membrane Ferri-Siderophore Receptors
6.4.3 TonB Complex
6.4.4 Transport of Ferri-Siderophores into the Periplasm
6.4.5 Iron Transport Across the Cytoplasmic Membrane
6.5 Regulation of Siderophore Synthesis and Transport
6.5.1 Fur Protein as Master Repressor
6.5.2 ECF & Factors
6.5.3 QS and Expression of Iron Transport Genes
6.6 Introduction to Signaling
6.6.1 Pyoverdine-Mediated Signaling
6.6.1.1 FpvA and Pyoverdine
6.6.1.2 Transfer of Signal: Role of FpvR
6.6.2 Pyochelin: An Alternative Signaling Mechanism
6.6.3 Enterobactin
6.6.4 Multiplicity of Heterologous Siderophore Signaling Systems in Pseudomonads
6.7 Concluding Remarks and Future Perspectives
References
7 Quorum Sensing in Pseudomonads
S.P. Diggle, S. Heeb, J.F. Dubern, M.P. Fletcher, S.A. Crusz, P. Williams, and M. Cámara
7.1 Introduction to Quorum Sensing
7.2 AHL QS in Pseudomonas aeruginosa
7.3 AHL-Dependent QS in Other Pseudomonads
7.4 AHQ-Dependent QS in Pseudomonads
7.4.1 Regulation and Biosynthesis of AHQs
7.4.2 Function of AHQs in P. aeruginosa
7.4.3 AHQs in Other Pseudomonads
7.5 Gac/Rsm System in Pseudomonads
7.5.1 Gac/Rsm as the Principal QS System
7.5.2 Gac/Rsm as a QS Fine-tuning System
7.6 QS and Infection
7.6.1 Role of QS in the Pathogenesis of P. aeruginosa Infections
7.6.2 Evidence for QS In vivo
7.6.3 QS and Biofilms in P. aeruginosa
7.6.4 QS Molecules and the Host
7.6.5 Disruption of QS Represents a Novel Approach for Managing P. aeruginosa Infections
7.7 Conclusions
References
8 Regulatory Networks in Pseudomonas aeruginosa: Role of Cyclic-di(3′,5′)-Guanylic Acid
Ute Römling and Susanne Häussler
8.1 Introduction – The History of Cyclic-di(3′,5′)-Guanylic Acid Detection
8.2 Principles of c-di-GMP Signaling
8.2.1 Transition between Motility and Sessility
8.2.2 Di-guanylate Cyclases
8.2.3 Phosphodiesterases
8.2.4 Principle Concepts of c-di-GMP Signaling
8.3 GGDEF and EAL Domain Proteins in P. aeruginosa
8.4 c-di-GMP Signaling in Biofilm Formation
8.5 c-di-GMP Signaling in Fimbrial Biogenesis
8.6 c-di-GMP Signaling in Exopolysaccharide Production
8.7 c-di-GMP Signaling and Motility
8.8 c-di-GMP Signaling in the Formation of Small Colony Variants
8.9 c-di-GMP Signaling in Virulence
8.10 c-di-GMP-Binding Proteins in P. aeruginosa
8.11 Perspectives
References
9 Pseudomonas aeruginosa: A Model for Biofilm Formation
Diane McDougald, Janosch Klebensberger, Tim Tolker-Nielsen, Jeremy S. Webb, Tim Conibear, Scott A. Rice, Sylvia M. Kirov, Carsten Matz, and Staffan Kjelleberg
9.1 Introduction
9.2 Biofilm Development
People also search for:
pseudomonas aeruginosa model organism
pseudomonas syringae life cycle
pseudomonas normally found
pseudomonas examples
pseudomonas spp characteristics
Tags: Bernd Rehm, Pseudomonas Model, Organism Pathogen, Cell Factory


