A First Course in Sobolev Spaces Second Edition by Giovanni Leoni – Ebook PDF Instant Download/Delivery: 1470429217, 9781470429218
Full download A First Course in Sobolev Spaces Second Edition after payment

Product details:
ISBN 10: 1470429217
ISBN 13: 9781470429218
Author: Giovanni Leoni
Table of contents:
PART 1. FUNCTIONS OF ONE VARIABLE
Chapter 1. Monotone Functions
§1.1. Continuity
§1.2. Differentiability
Chapter 2. Functions of Bounded Pointwise Variation
§2.1. Pointwise Variation
§2.2. Continuity
§2.3. Differentiability
§2.4. Monotone Versus BPV
§2.5. The Space BPV(I; Y)
§2.6. Composition in BPV(I; Y)
§2.7. Banach Indicatrix
Chapter 3. Absolutely Continuous Functions
§3.1. AC(I; Y) Versus BPV(I; Y)
§3.2. The Fundamental Theorem of Calculus
§3.3. Lusin (N) Property
§3.4. Superposition in AC(I; Y)
§3.5. Chain Rule
§3.6. Change of Variables
§3.7. Singular Functions
Chapter 4. Decreasing Rearrangement
§4.1. Definition and First Properties
§4.2. Function Spaces and Decreasing Rearrangement
Chapter 5. Curves
§5.1. Rectifiable Curves
§5.2. Arclength
§5.3. Length Distance
§5.4. Curves and Hausdorff Measure
§5.5. Jordan’s Curve Theorem
Chapter 6. Lebesgue–Stieltjes Measures
§6.1. Measures Versus Increasing Functions
§6.2. Vector-Valued Measures Versus BPV(I; Y)
§6.3. Decomposition of Measures
Chapter 7. Functions of Bounded Variation and Sobolev Functions
§7.1. BV(Ω) Versus BPV(Ω)
§7.2. Sobolev Functions Versus Absolutely Continuous Functions
§7.3. Interpolation Inequalities
Chapter 8. The Infinite-Dimensional Case
§8.1. The Bochner Integral
§8.2. Lp Spaces on Banach Spaces
§8.3. Functions of Bounded Pointwise Variation
§8.4. Absolutely Continuous Functions
§8.5. Sobolev Functions
PART 2. FUNCTIONS OF SEVERAL VARIABLES
Chapter 9. Change of Variables and the Divergence Theorem
§9.1. Directional Derivatives and Differentiability
§9.2. Lipschitz Continuous Functions
§9.3. The Area Formula: The C¹ Case
§9.4. The Area Formula: The Differentiable Case
§9.5. The Divergence Theorem
Chapter 10. Distributions
§10.1. The Spaces 𝒟ₖ(Ω), 𝒟(Ω), and 𝒟′(Ω)
§10.2. Order of a Distribution
§10.3. Derivatives of Distributions and Distributions as Derivatives
§10.4. Rapidly Decreasing Functions and Tempered Distributions
§10.5. Convolutions
§10.6. Convolution of Distributions
§10.7. Fourier Transforms
§10.8. Littlewood–Paley Decomposition
Chapter 11. Sobolev Spaces
§11.1. Definition and Main Properties
§11.2. Density of Smooth Functions
§11.3. Absolute Continuity on Lines
§11.4. Duals and Weak Convergence
§11.5. A Characterization of W¹,ᵖ(Ω)
Chapter 12. Sobolev Spaces: Embeddings
§12.1. Embeddings: mp < N
§12.2. Embeddings: mp = N
§12.3. Embeddings: mp > N
§12.4. Superposition
§12.5. Interpolation Inequalities in ℝᴺ
Chapter 13. Sobolev Spaces: Further Properties
§13.1. Extension Domains
§13.2. Poincaré Inequalities
§13.3. Interpolation Inequalities in Domains
Chapter 14. Functions of Bounded Variation
§14.1. Definition and Main Properties
§14.2. Approximation by Smooth Functions
§14.3. Bounded Pointwise Variation on Lines
§14.4. Coarea Formula for BV Functions
§14.5. Embeddings and Isoperimetric Inequalities
§14.6. Density of Smooth Sets
§14.7. A Characterization of BV(Ω)
Chapter 15. Sobolev Spaces: Symmetrization
§15.1. Symmetrization in Lp Spaces
§15.2. Lorentz Spaces
§15.3. Symmetrization of W¹,ᵖ and BV Functions
§15.4. Sobolev Embeddings Revisited
Chapter 16. Interpolation of Banach Spaces
§16.1. Interpolation: K-Method
§16.2. Interpolation: J-Method
§16.3. Duality
§16.4. Lorentz Spaces as Interpolation Spaces
Chapter 17. Besov Spaces
§17.1. Besov Spaces Bˢ,ᵖ_q
§17.2. Some Equivalent Seminorms
§17.3. Besov Spaces as Interpolation Spaces
§17.4. Sobolev Embeddings
§17.5. The Limit of Bˢ,ᵖ_q as s → 0⁺ and s → m⁻
§17.6. Besov Spaces and Derivatives
§17.7. Yet Another Equivalent Norm
§17.8. And More Embeddings
Chapter 18. Sobolev Spaces: Traces
§18.1. The Trace Operator
§18.2. Traces of Functions in W¹,¹(Ω)
§18.3. Traces of Functions in BV(Ω)
§18.4. Traces of Functions in W¹,ᵖ(Ω), p > 1
§18.5. Traces of Functions in Wᵐ,¹(Ω)
§18.6. Traces of Functions in Wᵐ,ᵖ(Ω), p > 1
§18.7. Besov Spaces and Weighted Sobolev Spaces
People also search for:
leoni a first course in sobolev spaces
leoni a first course in sobolev spaces pdf
g leoni a first course in sobolev spaces
a first course in sobolev spaces pdf
a first course in sobolev spaces second edition
Tags: Giovanni Leoni, First Course, Sobolev Spaces


