Nonequilibrium Thermodynamics Transport and Rate Processes in Physical Biological Systems Transport and Rate Processes in Physical and Biological Systems 1st Edition by Yasar Demirel – Ebook PDF Instant Download/Delivery: 978-0080479729, 0080479729
Full download Nonequilibrium Thermodynamics Transport and Rate Processes in Physical Biological Systems Transport and Rate Processes in Physical and Biological Systems 1st Edition after payment

Product details:
ISBN 10: 0080479729
ISBN 13: 978-0080479729
Author: Yasar Demirel
The book begins with a brief review of equilibrium systems and transport and rate processes, then covers the following areas: theory of nonequilibrium thermodynamics; dissipation function; entropy and exergy; analysis and case studies on using the second law of thermodynamics; economic impact of the nonequilibrium thermodynamics theory; analysis of transport and rate processes; membrane transport; dissipative structures and biological systems; and other thermodynamic approaches and extended nonequilibrium thermodynamics.
– Summarizes new applications of thermodynamics as tools for design and optimisation
– Covers second law and exergy analysis for sustainable development
– Promotes understanding of the coupled phenomena of natural processes
Table of contents:
1. Equilibrium Thermodynamics
-
1.1. Basic Definitions
-
1.2. Reversible and Irreversible Processes
-
1.3. Equilibrium
-
1.3.1. Fundamental Equations
-
1.3.2. Thermodynamic Equilibrium
-
-
1.4. Thermodynamic Laws
-
1.4.1. The Zeroth Law of Thermodynamics
-
1.4.2. The First Law of Thermodynamics
-
1.4.3. The Second Law of Thermodynamics
-
-
1.5. Entropy and Entropy Production
-
1.6. The Gibbs Equation
-
1.7. Equations of State
-
1.8. Thermodynamic Potentials
-
1.8.1. Cross Relations
-
1.8.2. Extremum Principles
-
-
References
2. Transport and Rate Processes
-
Introduction
-
2.1. Nonequilibrium Systems
-
2.2. Kinetic Approach
-
2.3. Transport Phenomena
-
2.3.1. Momentum Transfer
-
2.3.2. Heat Transfer
-
2.3.3. Mass Transfer
-
-
2.4. The Maxwell-Stefan Equations
-
2.5. Transport Coefficients
-
2.6. Electric Charge Flow
-
2.7. The Relaxation Theory
-
2.8. Chemical Reactions
-
2.9. Coupled Processes
-
References
3. Linear Nonequilibrium Thermodynamics
-
Introduction
-
3.1. Local Thermodynamic Equilibrium
-
3.2. Second Law of Thermodynamics
-
3.3. Phenomenological Equations
-
3.3.1. Flows and Forces
-
-
3.4. Curie–Prigogine Principle
-
3.5. Dissipation Function
-
3.6. Variation of Entropy Production
-
References
4. Balance Equations and Entropy Generation
-
4.1. Introduction
-
4.1.1. The Mass Balance Equations
-
4.1.2. The Momentum Balance Equations
-
4.1.3. The Energy Balance Equations
-
4.1.4. The Entropy Balance Equations
-
-
4.2. Entropy Generation Equation
-
References
5. Entropy and Exergy
-
5.1. Entropy
-
5.1.1. Entropy Balance
-
-
5.2. Exergy
-
5.2.1. Exergy Balance
-
5.2.2. Flow Exergy
-
5.2.3. Exergetic (Second Law) Efficiency
-
5.2.4. Chemical Exergy
-
5.2.5. Depletion Number
-
-
References
6. Using the Second Law of Thermodynamics
-
Introduction
-
6.1. Second Law Analysis
-
6.1.1. Optimization Problem
-
-
6.2. Heat and Fluid Flow
-
6.2.1. Case Studies
-
-
6.3. Heat and Mass Transfer
-
6.3.1. Case Studies
-
-
6.4. Chemical Reactions and Reacting Flows
-
6.4.1. Case Studies
-
-
6.5. Separation
-
6.5.1. Extraction
-
6.5.2. Distillation
-
6.5.3. Case Studies
-
-
References
7. Thermoeconomics
-
Introduction
-
7.1. Thermodynamic Analysis
-
7.2. Thermodynamic Optimum
-
7.2.1. Exergy Analysis
-
7.2.2. Exhaustion of Renewable Resources
-
7.2.3. Ecological Cost
-
-
7.3. Availability
-
7.4. Exergy Destruction Number
-
7.5. Equipartition and Optimization
-
References
8. Diffusion
-
Introduction
-
8.1. Maxwell–Stefan Diffusivity
-
8.2. Diffusion in Nonelectrolyte Systems
-
8.3. Diffusion in Electrolyte Systems
-
8.4. Irreversible Processes in Electrolyte Systems
-
References
9. Heat and Mass Transfer
-
Introduction
-
9.1. Heat and Mass Transfer
-
9.2. Heat of Transport
-
9.3. Degree of Coupling
-
9.4. Coupling in Liquid Mixtures
-
9.4.1. Coupling in Binary Liquid Mixtures
-
9.4.2. Coupling in Ternary Liquid Mixtures
-
-
References
10. Chemical Reactions
-
Introduction
-
10.1. Dissipation for Chemical Reactions
-
10.1.1. Michaelis–Menten Kinetics
-
-
10.2. Coupled Chemical Reactions
-
10.2.1. Two-Reaction Coupling
-
-
References
11. Membrane Transport
-
Introduction
-
11.1. Passive Transport
-
11.1.1. Composite Membranes
-
11.1.2. Electrokinetic Effect
-
-
11.2. Facilitated Transport
-
11.3. Active Transport
-
References
12. Thermodynamics and Biological Systems
-
Introduction
-
12.1. Mitochondria
-
12.2. Bioenergetics in Mitochondria
-
12.3. Oxidative Phosphorylation
-
12.4. Proper Pathways
-
12.5. Multiple Inflection Points
-
12.6. Coupling in Mitochondria
-
12.6.1. Variation of Coupling
-
-
12.7. Thermodynamic Regulation in Bioenergetics
-
12.7.1. Uncoupling
-
12.7.2. Slipping
-
12.7.3. Potassium Channels
-
12.7.4. Metabolic Control Analysis
-
-
12.8. Facilitated Transport
-
12.8.1. Kinetic Formulation
-
12.8.2. Nonequilibrium Thermodynamic Approach
-
-
12.9. Active Transport
-
12.10. Molecular Evolution
-
12.11. Molecular Machines
-
12.12. Evolutionary Criterium
-
References
13. Other Thermodynamic Approaches
-
Introduction
-
13.1. Network Thermodynamics with Bond Graph
-
13.1.1. Transport Processes
-
13.1.2. Chemical Processes
-
-
13.2. Mosaic in Nonequilibrium Thermodynamics
-
13.3. Rational Thermodynamics
-
References
14. Extended Nonequilibrium Thermodynamics
-
Introduction
-
14.1. Stability
-
14.2. Ordering in Physical Structures
-
14.2.1. Ordering in Convection
-
14.2.2. Ordering in Chemical Reactions
-
-
14.3. Ordering in Biological Structures
-
14.3.1. Ordering in Time: Biological Clocks
-
-
14.4. Bifurcation
-
14.5. Extended Nonequilibrium Thermodynamics
-
References
People also search for:
nonequilibrium thermodynamics
journal of nonequilibrium thermodynamics
de groot mazur nonequilibrium thermodynamics pdf
unsupervised learning using nonequilibrium thermodynamics
de groot mazur nonequilibrium thermodynamics
Tags: Yasar Demirel, Nonequilibrium Thermodynamics, Transport and Rate


