Java Data Mining Strategy Standard and Practice A Practical Guide for architecture design and implementation 1st Edition by Mark F. Hornick, Sunil Venkayala, Erik Marcadé – Ebook PDF Instant Download/Delivery: 978-0123704528, 0123704529
Full download Java Data Mining Strategy Standard and Practice A Practical Guide for architecture design and implementation 1st Edition after payment

Product details:
ISBN 10: 0123704529
ISBN 13: 978-0123704528
Author: Mark F. Hornick, Sunil Venkayala, Erik Marcadé
Whether you are a software developer, systems architect, data analyst, or business analyst, if you want to take advantage of data mining in the development of advanced analytic applications, Java Data Mining, JDM, the new standard now implemented in core DBMS and data mining/analysis software, is a key solution component. This book is the essential guide to the usage of the JDM standard interface, written by contributors to the JDM standard.
Table of contents:
-
Preface
-
Guide to Readers
Part I – Strategy
-
Chapter 1 – Overview of Data Mining
3.1. Why Data Mining Is Relevant Today?
3.2. Introducing Data Mining
3.2.1. Data Mining by Other Names
3.2.2. Data Mining Versus Other Forms of Advanced Analytics
3.2.3. Process
3.2.4. What Is a Data Mining Model?
3.2.5. Some Jargon
3.3. The Mining Metaphor
3.4. The Value of Data Mining
3.4.1. How Reliable Is Data Mining?
3.4.2. How Can Data Mining Increase Profits and Reduce Costs?
3.5. Summary
3.6. References -
Chapter 2 – Solving Problems in Industry
4.1. Cross-Industry Data Mining Solutions
4.1.1. Customer Acquisition
4.1.2. Customer Retention
4.1.3. Response Modeling
4.1.4. Fraud Detection
4.1.5. Cross-Selling
-
Chapter 3 – Data Mining Process
5.1. A Standardized Data Mining Process
5.1.1. Business Understanding Phase
5.1.2. Data Understanding Phase
5.1.3. Data Preparation Phase
5.1.4. Modeling Phase
5.1.5. Evaluation Phase
5.1.6. Deployment Phase
5.2. A More Detailed View of Data Analysis and Preparation
5.3. Data Mining Modeling, Analysis, and Scoring Processes
5.3.1. Model Building
5.3.2. Model Apply
5.3.3. Model Test
5.4. The Role of Databases and Data Warehouses in Data Mining
5.5. Data Mining in Enterprise Software Architectures
5.5.1. Architectures
5.5.2. Incorporating Data Mining into Business Operations
5.5.3. Business Workflow
5.6. Advances in Automated Data Mining
5.7. Summary
5.8. References -
Chapter 4 – Mining Functions and Algorithms
6.1. Data Mining Functions
6.2. Classification
-
6.3. Regression
6.4. Attribute Importance
6.5. Association
6.6. Clustering
6.7. Summary
6.8. References -
Chapter 5 – JDM Strategy
7.1. What Is the JDM Strategy?
7.2. Role of Standards
7.2.1. Why Create a Standard?
7.2.2. What Do Data Mining Standards Enable?
7.3. Summary
7.4. References -
Chapter 6 – Getting Started
8.1. Business Understanding
8.2. Data Understanding
8.3. Data Preparation
8.4. Modeling
8.4.1. Build
8.4.2. Test
8.5. Evaluation
8.6. Deployment
8.7. Summary
8.8. References
Part II – Standards
-
Chapter 7 – Java Data Mining Concepts
9.1. Classification Problem
9.1.1. Problem Definition: How to Reduce Customer Attrition?
9.1.2. Solution Approach: Predict Customers Who Are Likely to Attrite
9.1.3. Data Specification: CUSTOMERS Dataset
9.1.4. Specify Settings: Fine-Tune the Solution to the Problem
9.1.5. Select Algorithm: Find the Best Fit Algorithm
9.1.6. Evaluate Model Quality: Compute Classification Test Metrics
9.1.7. Apply Model: Obtain Prediction Results
-
9.2. Regression Problem
9.2.1. Problem Definition: How to Reduce Processing Time of Residential Real-Estate Appraisals?
9.2.2. Solution Approach: Property Value Prediction Using Regression
9.2.3. Data Specification: REAL_ESTATE_APPRAISALS Dataset
9.2.4. Select Algorithm: Find the Best Fit Algorithm
9.2.5. Evaluate Model Quality: Compute Regression Test Metrics
9.2.6. Apply Model: Obtain Prediction Results9.3. Attribute Importance
9.3.1. Problem Definition: How to Find Important Customer Attributes?
9.3.2. Solution Approach: Rank Attributes According to Predictive Value
9.3.3. Data Specification, Fine-Tune Settings, and Algorithm Selection
9.3.4. Use Model Details: Explore Attribute Importance Values9.4. Association Rules Problem
9.4.1. Problem Definition: How to Identify Cross-Sell Products for Customers?
9.4.2. Solution Approach: Discover Product Associations From Customer Data
9.4.3. Data Specification: CUSTOMERS and Their Product Purchase Data
9.4.4. Fine-Tune Settings: Filter Rules Based on Rule Quality Metrics
9.4.5. Use Model Content: Explore Rules From the Model9.5. Clustering Problem
9.5.1. Problem Definition: How to Understand Customer Behavior and Needs?
9.5.2. Solution Approach: Find Clusters of Similar Customers
9.5.3. Data Specification and Settings
9.5.4. Use Model Details: Explore Clusters
9.5.5. Apply Clustering Model: Assign New Cases to the Clusters9.6. Summary
9.7. References -
Chapter 8 – Design of the JDM API
10.1. Object Modeling of Data Mining Concepts
10.1.1. Data Specification Objects
-
10.1.2. Settings Objects
10.1.3. Models
10.1.4. Test Metrics
10.1.5. Tasks
10.2. Modular Packages
10.3. Connection Architecture
10.4. Object Factories
10.5. Uniform Resource Identifiers for Datasets
10.6. Enumerated Types
10.7. Exceptions
10.8. Discovering DME Capabilities
10.9. Summary
10.10. References -
Chapter 9 – Using the JDM API
11.1. Connection Interfaces
11.1.1. Using the ConnectionFactory Interface
11.1.2. Using the Connection Interface
11.1.3. Executing Mining Operations
11.1.4. Exploring Mining Capabilities
11.1.5. Finding DME and JDM Version Information
11.1.6. Object List Methods
11.1.7. Model and Data Load Methods
11.2. Using JDM Enumerations
11.3. Using Data Specification Interfaces
11.4. Using Classification Interfaces
11.4.1. Classification Settings
11.4.2. Algorithm Settings
11.4.3. Model Contents
11.4.4. Test Metrics for Model Evaluation
11.4.5. Applying a Model to Data in Batch
11.4.6. Applying a Model to a Single Record – Real-Time Scoring
11.5. Using Regression Interfaces
11.6. Using Attribute Importance Interfaces
11.7. Using Association Interfaces
11.8. Using Clustering Interfaces
11.9. Summary
11.10. References
-
Chapter 10 – XML Schema
12.1. Overview
12.2. Schema Elements
12.3. Schema Types
12.4. Using PMML with the JDM Schema
12.5. Use Cases for JDM XML Schema and Documents
12.6. Summary
12.7. References -
Chapter 11 – Web Services
13.1. What is a Web Service?
13.2. Service-Oriented Architecture
13.3. JDM Web Service
13.3.1. Overview of JDMWS Operations
13.3.2. JDMWS Use Case
13.3.3. JDM WSDL
13.3.4. Data Exchange and Security in JDMWS
13.4. Enabling JDM Web Services Using JAX-RPC
13.4.1. Overview of JAX-RPC
13.4.2. Build JDMWS Using JAX-RPC
13.5. Summary
13.6. References
Part III – Practice
-
Chapter 12 – Practical Problem Solving
14.1. Business Scenario 1: Targeted Marketing Campaign
14.1.1. Campaign Specifications
14.1.2. Design of the “Campaign Optimization” Object
14.1.3. Code Examples
14.1.4. Scenario I Conclusion
14.2. Business Scenario 2: Understanding Key Factors
14.2.1. Code Example
14.2.2. Scenario 2 Conclusion
14.3. Business Scenario 3: Using Customer Segmentation
14.3.1. Customer Segmentation Specifications
14.3.2. Design of the CustomerSegmenter Object
14.3.3. Code Examples
14.3.4. Scenario 3 Conclusion
-
12.4 Summary
-
References
-
Chapter 13 – Building Data Mining Tools Using JDM
17.1. Data Mining Tools
17.1.1. Architecture of the Demonstration Interfaces
17.1.2. Managing JDM Exceptions
17.2. Administrative Console
17.2.1. Creating the Connection
17.2.2. Retrieving the List of Classes That Can Be Saved
17.2.3. Retrieving the List of Saved Objects
17.2.4. Rename a Saved Object
17.2.5. Delete a Saved Object from the MOR
17.3. User Interface to Build and Save a Model
17.3.1. General Introduction
17.3.2. Getting the Metadata
17.3.3. Computing Statistics
17.3.4. Retrieving the Statistics Information
17.3.5. Saving the Physical Dataset, Build Settings, and Tasks
17.4. User Interface to Test Model Quality
17.4.1. Getting the List of Saved Models
17.4.2. Computing the Test Metrics
17.5. Summary -
Chapter 14 – Getting Started with JDM Web Services
18.1. A Web Service Client in PhP
18.1.1. Filling the Input Values Using Javascript
18.1.2. Saving the ApplySettings Object
18.1.3. Retrieving the List of Models
18.1.4. Executing RecordApply Task on Models
18.2. A Web Service Client in Java
18.2.1. How to Generate Java Classes with Axis
18.2.2. Opening the Connection to a JDMWS Live Server
18.2.3. Creating Build Settings
18.2.4. Creating a Physical DataSet
18.2.5. Creating a Build Task
18.2.6. Executing a BuildTask
-
14.3 Summary
-
References
-
Chapter 15 – Impacts on IT Infrastructure
21.1. What Does Data Mining Require from IT?
21.2. Impacts on Computing Hardware
21.3. Impacts on Data Storage Hardware
21.4. Data Access
21.4.1. Data Access for Model Building
21.4.2. Data Access for Apply and Test
21.5. Backup and Recovery
21.6. Scheduling
21.7. Workflow
21.8. Summary -
References
-
Chapter 16 – Vendor Implementations
23.1. Oracle Data Mining
23.1.1. Oracle Position on JDM
23.1.2. Oracle JDM Implementation Architecture
23.1.3. Oracle JDM Capabilities
23.1.4. Oracle JDM Extensions
23.1.5. DME URI and Data URI
23.1.6. Getting Started with OJDM
23.1.7. Other Oracle Data Mining APIs
23.1.8. Data Mining Graphical Interface Using OJDM
23.2. ΚΧΕΝ (Knowledge Extraction Engines)
23.2.1. KXEN Data Mining Activity
23.2.2. KXEN Position on JDM
23.2.3. KXEN JDM Implementation Architecture
23.2.4. KXEN JDM Capabilities
23.2.5. DME URI and Data URI Specifications
23.2.6. KXEN Extensions
23.2.7. KXEN Web Services Implementation
23.3. Guidelines for New Implementers
23.3.1. Standards Conformance
23.3.2. Using the TCK
23.4. Process for New JDM Users
23.5. Summary -
References
-
Part IV – Wrapping Up
-
Chapter 17 – Evolution of Data Mining Standards
26.1. Data Mining Standards
26.1.1. Predictive Model Markup Language
26.1.2. Common Warehouse Metadata for Data Mining
26.1.3. SQL/MM Part 6 Data Mining
26.2. Java Community Process
26.3. Why So Many Standards?
26.4. Directions for Data Mining Standards
26.5. Summary -
References
-
Chapter 18 – Preview of Java Data Mining 2.0
28.1. Transformations
28.2. Time Series
28.3. Apply for Association
28.4. Feature Extraction
28.5. Statistics
28.6. Multi-target Models
28.7. Text Mining
28.8. Summary -
References
-
Chapter 19 – Summary
-
Further Reading
-
Glossary
-
Index
-
About the Authors
People also search for:
examples of data mining in real life
data mining zaki
minecraft java mining tips
r data mining
3 types of data mining
Tags: Mark Hornick, Sunil Venkayala, Erik Marcadé, Java Data, Strategy Standard, Guide for architecture


